MATRIKS
Syifa Qurrota Ayuni
XI IPS 2
MATRIKS
a. Jenis dan konsep matriks
Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.
Sebagai contoh:
Diketahui jumlah penjualan mobil jenis A, B, dan C, dengan harga jual masing-masing 146, 275, dan 528 (dalam juta) pada kota-kota P, Q, R, adalah :
Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :
1. Matriks Baris dan Matriks Kolom
Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:
2. Matriks Persegi
Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
3. Matriks Segitiga Atas dan Segitiga Bawah
Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i > j atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i < j atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
4. Matriks Diagonal
Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.
5. Matriks Skalar
Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.
6. Matriks Indentitas
Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan “I”. Contoh:
Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen a_{ij} sama dengan elemen a_{ji}.
▪︎Penjumlahan dan Pengurangan Matriks
Syarat penjumlahan dan pengurangan matriks yaitu : jika terdapat dua matriks, misal matriks A dan B, yang memiliki ordo sama, maka elemen-elemen yang seletak dapat dijumlahkan atau dikurangkan. Jumlah matriks A dan matriks B dapat dinyatakan dengan A+B, sedangkan selisih matriks A dan matriks B dapat dinyatakan dengan A – B.
Contoh :
▪︎Perkalian Skalar pada Matriks
Pada operasi perkalian skalar, sebuah matriks dikalikan dengan bilangan skalar. Jika diketahui A merupakan suatu matriks dan K merupakan bilangan real, maka hasil perkalian K dengan matriks A adalah matriks yang diperoleh dengan mengalikan setiap elemen A dengan K.
Contoh :
▪︎Perkalian Dua Matriks
Berbeda dengan perkalian skalar yang hanya mengalikan setiap elemen matriks dengan bilangan skalar, perkalian dua matriks memiliki aturan tersendiri. Syarat dua buah matriks, misal matriks A dan matriks B, dapat dikalikan adalah jika banyaknya kolom matriks A sama dengan banyaknya baris matriks B.
Bentuk perkalian antar matriks secara umum, yaitu :
Untuk mencari hasil kali matriks A dengan matriks B ialah dengan mengalikan elemen pada baris-baris matriks A dengan elemen pada kolom-kolom matriks B, kemudian jumlahkan hasil perkalian antara baris dan kolom tersebut.
Contoh matriks :
▪︎Transpose MatriksTranspose suatu matriks, misal matriks A, yang dilambangkan dengan At adalah sebuah matriks yang disusun dengan cara menukarkan baris matriks A menjadi kolom matriks At dan kolom matriks A menjadi baris matriks At.
Contoh :
Daftar Pustaka